Pages

Friday 29 June 2012

Two-stroke Ic engine

Two-stroke engine





A two-stroke engine is an internal combustion engine that completes the process cycle in one revolution of the crankshaft (an up stroke and a down stroke of the piston, compared to twice that number for a four-stroke engine). This is accomplished by using the end of the combustion stroke and the beginning of the compression stroke to perform simultaneously the intake and exhaust (or scavenging) functions. In this way, two-stroke engines often provide high specific power, at least in a narrow range of rotational speeds. The functions of some or all of the valves required by a four-stroke engine are usually served in a two-stroke engine by ports that are opened and closed by the motion of the piston(s), greatly reducing the number of moving parts. Gasoline (spark ignition) versions are particularly useful in lightweight (portable) applications, such as chainsaws, and the concept is also used in diesel compression ignition engines in large and weight insensitive applications, such as ships and locomotives.
The first commercial two-stroke engine involving in-cylinder compression is attributed to Scottish engineer Dugald Clerk, who in 1881 patented his design, his engine having a separate charging cylinder. The crankcase-scavenged engine, employing the area below the piston as a charging pump, is generally credited to Englishman Joseph Day.

Applications

The two-stroke engine was very popular throughout the 20th century in motorcycles and small-engined devices, such as chainsaws and outboard motors, and was also used in some cars, a few tractors and many ships. Part of their appeal was their simple design (and resulting low cost) and often high power-to-weight ratio. The lower cost to rebuild and maintain made the two stroke engine incredibly popular, until the EPA mandated more stringent emission controls in 1978 (taking effect in 1980) and in 2004 (taking effect in 2005 and 2010). The industry largely responded by switching to four-stroke engines, which emit less pollution than two stroke engines . Many designs use total-loss lubrication, with the oil being burned in the combustion chamber, causing "blue smoke" and other types of exhaust pollution. This is a major reason for two-stroke engines being replaced by four-stroke engines in many applications.
Two-stroke engines continue to be commonly used in high-power, handheld applications such as string trimmers and chainsaws. The light overall weight, and light-weight spinning parts give important operational and even safety advantages. For example, only a two-stroke engine that uses a gasoline-oil mixture can power a chainsaw operating in any position.
These engines are still used for small, portable, or specialized machine applications such as outboard motors, high-performance, small-capacity motorcycles, mopeds, underbones, scooters, tuk-tuks, snowmobiles, karts, ultralights, model airplanes (and other model vehicles) and lawnmowers. The two-stroke cycle is used in many diesel engines, most notably large industrial and marine engines, as well as some trucks and heavy machinery.

Different two-stroke design types

Piston-controlled inlet port

Piston port is the simplest of the designs. All functions are controlled solely by the piston covering and uncovering the ports as it moves up and down in the cylinder. A fundamental difference from typical four-stroke engines is that the crankcase is sealed and forms part of the induction process in gasoline and hot bulb engines. Diesel engines have mostly a Roots blower or piston pump for scavenging.

Reed inlet valve

The reed valve is a simple but highly effective form of check valve commonly fitted in the intake tract of the piston-controlled port. They allow asymmetric intake of the fuel charge, improving power and economy, while widening the power band. They are widely used in ATVs and marine outboard engines.

Rotary inlet valve

The intake pathway is opened and closed by a rotating member. A familiar type sometimes seen on small motorcycles is a slotted disk attached to the crankshaft which covers and uncovers an opening in the end of the crankcase, allowing charge to enter during one portion of the cycle.
Another form of rotary inlet valve used on two-stroke engines employs two cylindrical members with suitable cutouts arranged to rotate one within the other - the inlet pipe having passage to the crankcase only when the two cutouts coincide. The crankshaft itself may form one of the members, as in most glow plug model engines. In another embodiment, the crank disc is arranged to be a close-clearance fit in the crankcase, and is provided with a cutout which lines up with an inlet passage in the crankcase wall at the appropriate time, as in the Vespa motor scooter.
The advantage of a rotary valve is it enables the two-stroke engine's intake timing to be asymmetrical, which is not possible with piston port type engines. The piston port type engine's intake timing opens and closes before and after top dead center at the same crank angle, making it symmetrical, whereas the rotary valve allows the opening to begin earlier and close earlier.
Rotary valve engines can be tailored to deliver power over a wider speed range or higher power over a narrower speed range than either piston port or reed valve engine. Where a portion of the rotary valve is a portion of the crankcase itself, it is particularly important that no wear is allowed to take place.

Crossflow-scavenged


In a crossflow engine, the transfer and exhaust ports are on opposite sides of the cylinder, and a deflector on the top of the piston directs the fresh intake charge into the upper part of the cylinder, pushing the residual exhaust gas down the other side of the deflector and out the exhaust port. The deflector increases the piston's weight and exposed surface area, and also makes it difficult to achieve an efficient combustion chamber shape. This design has been largely superseded by the loop scavenging method (below), although for smaller or slower engines, the crossflow-scavenged design can be an acceptable approach.

Loop-scavenged

This method of scavenging uses carefully shaped and positioned transfer ports to direct the flow of fresh mixture toward the combustion chamber as it enters the cylinder. The fuel/air mixture strikes the cylinder head, then follows the curvature of the combustion chamber, and then is deflected downward.
This not only prevents the fuel/air mixture from traveling directly out the exhaust port, but also creates a swirling turbulence which improves combustion efficiency, power and economy. Usually, a piston deflector is not required, so this approach has a distinct advantage over the cross-flow scheme (above).
Often referred to as "Schnuerle" (or "Schnürl") loop scavenging after the German inventor of an early form in the mid 1920s, it became widely adopted in that country during the 1930s and spread further afield after World War II.
Loop scavenging is the most common type of fuel/air mixture transfer used on modern two-stroke engines. Suzuki was one of the first manufacturers outside of Europe to adopt loop-scavenged two-stroke engines. This operational feature was used in conjunction with the expansion chamber exhaust developed by German motorcycle manufacturer, MZ and Walter Kaaden.
Loop scavenging, disc valves and expansion chambers worked in a highly coordinated way to significantly increase the power output of two-stroke engines, particularly from the Japanese manufacturers Suzuki, Yamaha and Kawasaki. Suzuki and Yamaha enjoyed success in grand Prix motorcycle racing in the 1960s due in no small way to the increased power afforded by loop scavenging.


Uniflow-scavenged

In a uniflow engine, the mixture, or air in the case of a diesel, enters at one end of the cylinder controlled by the piston and the exhaust exits at the other end controlled by an exhaust valve or piston. The scavenging gas-flow is therefore in one direction only, hence the name uniflow. The valved arrangement is common in diesel locomotives (Electro-Motive Diesel) and large marine two-stroke engines (Wärtsilä). Ported types are represented by the opposed piston design in which there are two pistons in each cylinder, working in opposite directions such as the Junkers Jumo and Napier Deltic. The once-popular split-single design falls into this class, being effectively a folded uniflow. With advanced angle exhaust timing, uniflow engines can be supercharged with a crankshaft-driven (piston  or Roots) blower.

Stepped piston engine

The piston of this engine is "top-hat" shaped; the upper section forms the regular cylinder, and the lower section performs a scavenging function. The units run in pairs, with the lower half of one piston charging an adjacent combustion chamber.
This system is still partially dependent on total loss lubrication (for the upper part of the piston), the other parts being sump lubricated with cleanliness and reliability benefits. The piston weight is only about 20% heavier than a loop-scavenged piston because skirt thicknesses can be less. Bernard Hooper Engineering Ltd (BHE). are one of the more recent engine developers using this approach.

Power valve systems

Many modern two-stroke engines employ a power valve system. The valves are normally in or around the exhaust ports. They work in one of two ways: either they alter the exhaust port by closing off the top part of the port, which alters port timing, such as Ski-doo R.A.V.E, Yamaha YPVS, Honda RC-Valve, Kawasaki K.I.P.S., Cagiva C.T.S. or Suzuki AETC systems, or by altering the volume of the exhaust, which changes the resonant frequency of the expansion chamber, such as the Honda V-TACS system. The result is an engine with better low-speed power without sacrificing high-speed power.

Direct injection

Direct injection has considerable advantages in two-stroke engines, eliminating some of the waste and pollution caused by carbureted two-strokes where a proportion of the fuel/air mixture entering the cylinder goes directly out, unburned, through the exhaust port. Two systems are in use, low-pressure air-assisted injection, and high pressure injection.
Since the fuel does not pass through the crankcase, a separate source of lubrication is needed.

Two-stroke diesel engines

Diesel engines rely solely on the heat of compression for ignition. In the case of Schnuerle ported and loop-scavenged engines, intake and exhaust happens via piston-controlled ports. A uniflow diesel engine takes in air via scavenge ports, and exhaust gases exit through an overhead poppet valve. Two-stroke diesels are all scavenged by forced induction. Some designs use a mechanically driven Roots blower, whilst marine diesel engines normally use exhaust-driven turbochargers, with electrically-driven auxiliary blowers for low-speed operation when exhaust turbochargers are unable to deliver enough air.
Marine two-stroke diesel engines directly coupled to the propeller are able to start and run in either direction as required. The fuel injection and valve timing is mechanically readjusted by using a different set of cams on the camshaft. Thus, the engine can be run in reverse to move the vessel backwards.

 

 






crank shaft

Crank Shaft



The crankshaft, sometimes casually abbreviated to crank, is the part of an engine that translates reciprocating linear piston motion into rotation. To convert the reciprocating motion into rotation, the crankshaft has "crank throws" or "crankpins", additional bearing surfaces whose axis is offset from that of the crank, to which the "big ends" of the connecting rods from each cylinder attach.
It typically connects to a flywheel, to reduce the pulsation characteristic of the four-stroke cycle, and sometimes a torsional or vibrational damper at the opposite end, to reduce the torsional vibrations often caused along the length of the crankshaft by the cylinders farthest from the output end acting on the torsional elasticity of the metal.

Design

Large engines are usually multicylinder to reduce pulsations from individual firing strokes, with more than one piston attached to a complex crankshaft. Many small engines, such as those found in mopeds or garden machinery, are single cylinder and use only a single piston, simplifying crankshaft design. This engine can also be built with no riveted seam.

Bearings

The crankshaft has a linear axis about which it rotates, typically with several bearing journals riding on replaceable bearings (the main bearings) held in the engine block. As the crankshaft undergoes a great deal of sideways load from each cylinder in a multicylinder engine, it must be supported by several such bearings, not just one at each end. This was a factor in the rise of V8 engines, with their shorter crankshafts, in preference to straight-8 engines. The long crankshafts of the latter suffered from an unacceptable amount of flex when engine designers began using higher compression ratios and higher rotational speeds. High performance engines often have more main bearings than their lower performance cousins for this reason.

Piston stroke

The distance the axis of the crank throws from the axis of the crankshaft determines the piston stroke measurement, and thus engine displacement. A common way to increase the low-speed torque of an engine is to increase the stroke, sometimes known as "shaft-stroking." This also increases the reciprocating vibration, however, limiting the high speed capability of the engine. In compensation, it improves the low speed operation of the engine, as the longer intake stroke through smaller valve(s) results in greater turbulence and mixing of the intake charge. Most modern high speed production engines are classified as "over square" or short-stroke, wherein the stroke is less than the diameter of the cylinder bore. As such, finding the proper balance between shaft-stroking speed and length leads to better results.
Engine configuration

The configuration and number of pistons in relation to each other and the crank leads to straight, V or flat engines. The same basic engine block can be used with different crankshafts, however, to alter the firing order; for instance, the 90° V6 engine configuration, in older days sometimes derived by using six cylinders of a V8 engine with what is basically a shortened version of the V8 crankshaft, produces an engine with an inherent pulsation in the power flow due to the "missing" two cylinders. The same engine, however, can be made to provide evenly spaced power pulses by using a crankshaft with an individual crank throw for each cylinder, spaced so that the pistons are actually phased 120° apart, as in the GM 3800 engine. While production V8 engines use four crank throws spaced 90° apart, high-performance V8 engines often use a "flat" crankshaft with throws spaced 180° apart. The difference can be heard as the flat-plane crankshafts result in the engine having a smoother, higher-pitched sound than cross-plane (for example, IRL IndyCar Series compared to NASCAR Nextel Cup, or a Ferrari 355 compared to a Chevrolet Corvette). See the main article on crossplane crankshafts.


Forging and casting

Crankshafts can be forged from a steel bar usually through roll forging or cast in ductile steel. Today more and more manufacturers tend to favor the use of forged crankshafts due to their lighter weight, more compact dimensions and better inherent dampening. With forged crankshafts, vanadium microalloyed steels are mostly used as these steels can be air cooled after reaching high strengths without additional heat treatment, with exception to the surface hardening of the bearing surfaces. The low alloy content also makes the material cheaper than high alloy steels. Carbon steels are also used, but these require additional heat treatment to reach the desired properties. Iron crankshafts are today mostly found in cheaper production engines (such as those found in the Ford Focus diesel engines) where the loads are lower. Some engines also use cast iron crankshafts for low output versions while the more expensive high output version use forged steel.

Machining

Crankshafts can also be machined out of a billet, often a bar of high quality vacuum remelted steel. Though the fiber flow (local inhomogeneities of the material's chemical composition generated during casting) doesn’t follow the shape of the crankshaft (which is undesirable), this is usually not a problem since higher quality steels, which normally are difficult to forge, can be used. These crankshafts tend to be very expensive due to the large amount of material that must be removed with lathes and milling machines, the high material cost, and the additional heat treatment required. However, since no expensive tooling is needed, this production method allows small production runs without high costs.

Fatigue strength

The fatigue strength of crankshafts is usually increased by using a radius at the ends of each main and crankpin bearing. The radius itself reduces the stress in these critical areas, but since the radius in most cases are rolled, this also leaves some compressive residual stress in the surface, which prevents cracks from forming.

Hardening

Most production crankshafts use induction hardened bearing surfaces, since that method gives good results with low costs. It also allows the crankshaft to be reground without re-hardening. But high performance crankshafts, billet crankshafts in particular, tend to use nitridization instead. Nitridization is slower and thereby more costly, and in addition it puts certain demands on the alloying metals in the steel to be able to create stable nitrides. The advantage of nitridization is that it can be done at low temperatures, it produces a very hard surface, and the process leaves some compressive residual stress in the surface, which is good for fatigue properties. The low temperature during treatment is advantageous in that it doesn’t have any negative effects on the steel, such as annealing. With crankshafts that operate on roller bearings, the use of carburization tends to be favored due to the high Hertzian contact stresses in such an application. Like nitriding, carburization also leaves some compressive residual stresses in the surface.
  
Counterweights

Some expensive, high performance crankshafts also use heavy-metal counterweights to make the crankshaft more compact. The heavy-metal used is most often a tungsten alloy but depleted uranium has also been used. A cheaper option is to use lead, but compared with tungsten its density is much lower.

Stress on crankshafts

The shaft is subjected to various forces but generally needs to be analysed in two positions. Firstly, failure may occur at the position of maximum bending; this may be at the centre of the crank or at either end. In such a condition the failure is due to bending and the pressure in the cylinder is maximal. Second, the crank may fail due to twisting, so the conrod needs to be checked for shear at the position of maximal twisting. The pressure at this position is the maximal pressure, but only a fraction of maximal pressure.

Related Posts Plugin for WordPress, Blogger...